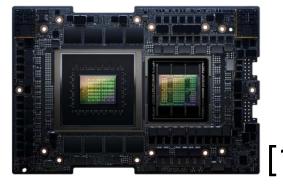
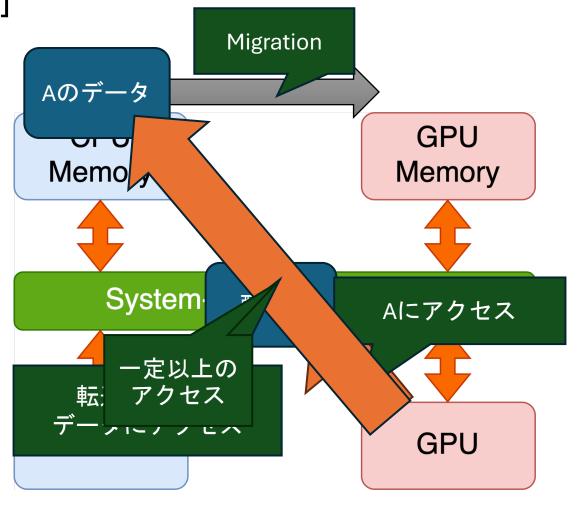

GPU・CPU一体型モジュール におけるUnified Memory 使用時の性能評価

情報科学類情報システム主専攻 202110949 吉田智 指導教員 朴 泰祐,藤田 典久 2025/2/13 (木)


GPU & Unified Memory

- GPU (Graphical Processing Unit)
 - ○高い演算性能と電力効率 → HPC分野での利用拡大
 - ★プログラミングの生産性低下
 - GPUメモリの管理、転送制御
- CUDA
 - NVIDIA製GPU向け開発環境
 - Unified Memory (UM)
 - GPU, CPU両方からアクセスできる メモリ空間を提供

CPUメモリ	GPUメモリ	バス
LPDDR5X	HBM3	Nvlink-C2C
512GB/s	4TB/s	450GB/s

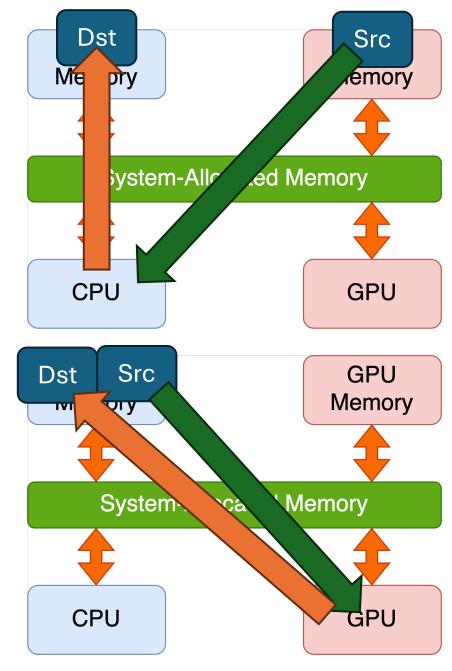


GH200

CPUメモリ	GPUメモリ	バス
LPDDR5X	HBM3	Nvlink-C2C
512GB/s	4TB/s	450GB/s

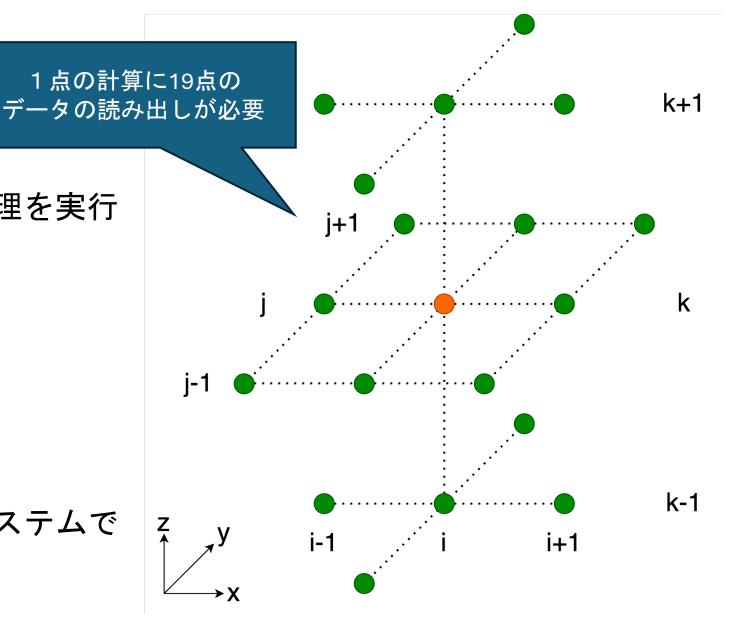
- GPU CPU一体型モジュール
 - ・ 一枚の基板上に実装
 - ・ 高速なバスで2つを接続
- System-Allocated Memory (SAM)
 - GH200が提供する新しいUM
 - ・転送処理なしにアクセス可
 - Migration
 - 一定以上のアクセスでデータが移動

研究目的


- GH200はほとんど使用経験がない
- GH200のメモリアクセスへの影響を理解
 - ・様々なアクセスパターンにおける性能測定
 - Migrationの動作
 - どんなプログラムなら恩恵を受けられるか
- GH200の有効性の評価
 - ・既存のシステムとの比較
 - ・性能、プログラムの生産性はどうなるか

実験 (1/2)

- SAM上のメモリ性能の評価
 - ・8パターンのメモリ性能を測定
 - ・この発表では2パターン取り上げる
 - 配列Src, Dstを一方に格納
 - Dst[i] = Src[i]をGPU or CPUで実行
 - ・連続で200回性能測定
 - これを10回行う。

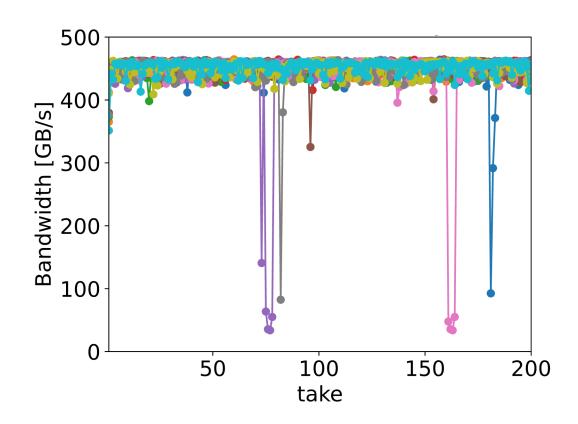

上 (1) Src: GPUM Dst: CPUM 処理: CPU

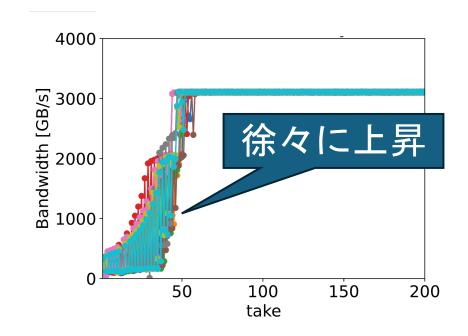
下 (2) Src: CPUM Dst: CPUM 処理: GPU

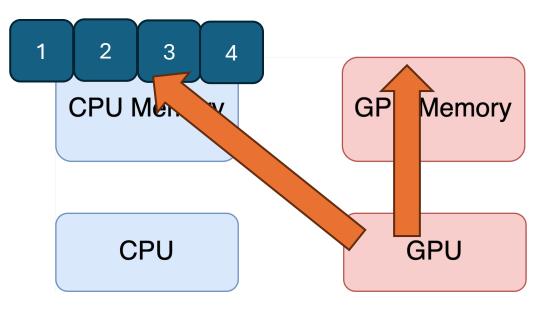
実験 (2/2)

- 姫野ベンチマーク[2]
 - ・ポアソン方程式を解く処理を実行
 - ・格子の全ての点で計算
 - ・メモリ性能に依存
 - ・3バージョンのGPU化
 - 通常のGPU化
 - UMを使用
 - SAMを使用
 - 既存システム、GH200システムで 実行し評価

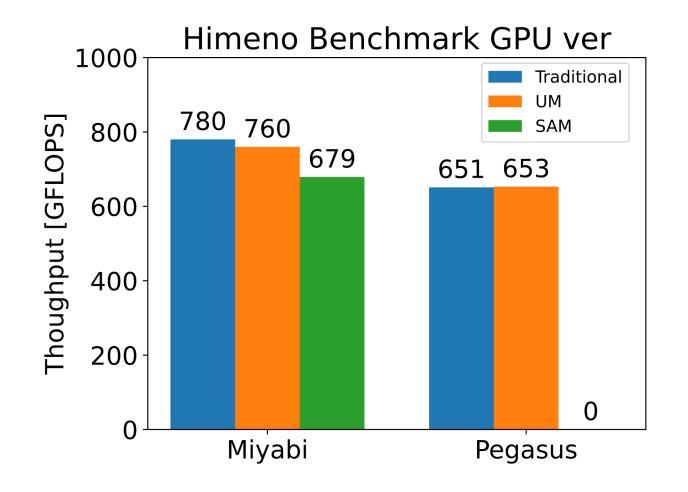
実験環境


- Miyabi [3]
 - 最先端共同HPC基盤施設が運用
 - 2025年1月14日より稼働開始
 - ・GH200を搭載した国内唯一のスパコン
- Pegasus [4]
 - ・筑波大学計算科学研究センターが運用
 - ・従来型のGPU・CPUシステム
 - GPUとしてH100を搭載
- ・両方とも1ノードを使用


性能評価 (1/4)


- SAM上でのメモリ性能
 - 配列サイズ: 4GB
 - ・右: (1)の結果
 - GPU-CPU間バスの理論性能 450GB/s
 - ・それと同等の性能
 - 性能が落ちるスパイクが発生
 - GPU-CPU間のデータ転送の多い プログラムに恩恵

性能評価 (2/4)


- SAM上のメモリ性能
 - 配列サイズ: 4GB
 - ・(2)の結果
 - GPUメモリの理論性能4TB/s
 - ・徐々に性能が上昇
 - Migrationによるもの
 - 少しずつデータを移動させている

性能評価 (3/4)

- 姫野ベンチマーク
 - ・サイズ512*512*1024
 - 3000回反復
 - 100GFLOPS低下
 - SAMの性能が若干低
 - ・ 転送が最初だけ
 - Migration前が遅い

性能評価 (4/4)

- 姫野ベンチマーク
 - ・ 生産性の改善
 - UMでもデータ転送制御が必要
 - SAMではそれも不要

```
通常のコード例
                                           SAMのコード例
                      UMのコード例
struct Matrix {
                      struct Matrix {
                                           struct Matrix {
 float *m
                       float *m
                                             float *m
Matrix A, B, C, ...
                      Matrix A, B, C, ...
                                           Matrix A, B
// GPU化コード
                     // GPU化コード
                                           // GPU化コード
Matrix *dA, *dB, *dC..
                      Matrix *dA, *dB,*dC...
float *dAm, *dBm, *dCm
cudaMalloc()
                      cudaMalloc()
cudaMalloc()
cudaMemcpy()
                      cudaMemcpy()
cudaMemcpy()
cudaMemcpy()
for 3000 (compute())
                      for 3000 (compute())
                                           for 3000 {compute()}
```

まとめ

- SAM上のメモリアクセスの評価
 - ・データ転送の多いプログラムに有効
- 姫野ベンチマーク
 - UMよりも生産性を改善
- GH200は有効であると言える。

- 今後の課題
 - ・より多くのベンチマークでの性能評価
 - ・マルチノードでのSAMの影響の評価